If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2-56y-144=0
a = 8; b = -56; c = -144;
Δ = b2-4ac
Δ = -562-4·8·(-144)
Δ = 7744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7744}=88$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-88}{2*8}=\frac{-32}{16} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+88}{2*8}=\frac{144}{16} =9 $
| 0.5c-2c+3.49=4 | | 3x-98=x-4 | | 3-6y=51 | | -7k=10=30 | | -2x+354=x+114 | | 2x+4/3-2x/3=5 | | 5-2(x-9)=13 | | -2=6/7*x | | 7-j=4 | | 133=0.7(200-c) | | 2(12b+7)+9b+1+9b+1=180 | | 2x+4=-x+298 | | x=(6x –10)° | | 3(x-4)+2x=13 | | 10a-2=4a-14 | | 0.333333(9x+3)=3x+1 | | 21=15+5b | | 43+90+b=180 | | 40m=5m | | 3x-5=-2x-4 | | n=14/4=1 | | 7p+7=6p | | x(x+9)=4x^2+5 | | 5(3x-7)-(2x-5)+2=3(2-x)-(x-5)+7 | | -5-1(-15x-1)=2(7x-16)-x | | -5-1(-15y-1)=2(7y-16)-y | | x^2+2x+4=x^2+x+10 | | y/9-1/2=5/18 | | x2=81,000 | | 3x-4x=-3 | | 22−-u=59 | | w+7-3=1 |